

MarCO Mission Summary

MarCO Mission Summary

3) EDL Relay Demo Real-time 8 kbps Fly-by

Earth

2) Early Cruise Tech Demo
Of Telecom and TCM
Technologies

Technology	Mission Objectives
Threshold	
Miniaturized deep space radio (IRIS)	Successful uplink and downlink at multiple data rates + ranging
Flat Panel Antenna	Receipt of telemetry at 8kbps
TCMs on a Cubesat	Execution of TCM 1
Baseline	
Cubesat in deep space	Viable operations beyond Earth orbit
Relay	Bent-pipe during Insight EDL

MarCO Spacecraft

MarCO Internal Components Overview

MarCO Overview:

Volume: 2 x 6U (12x24x36cm)

Mass: 14.0 kg

Power Generation:

Earth: 35 W

Data Rates: 62-8,000 bps

Delta-V: >40 m/s

Software:

FSW: protos (JPL)

GSW: AMPCS (NASA/JPL)

I&T:

In-house S/C I&T, testing,
Tyvak NLAS/Launch Integration

Operations:

Primary: DSN 34m EDL: Madrid 70m

MarCO

Mission Objective:

 Provide an 8kbps real-time relay for InSight's Entry,
 Descent and Landing at Mars

MarCO Overview:

Volume: 2 x 6U (10x10x30cm)

Mass: 14.0 kg

Power Generation:

Earth: 35 W

Data Rates: 62-8,000 bps

Delta-V: >40 m/s

Software:

FSW: protos (JPL)

GSW: AMPCS (NASA/JPL)

I&T:

In-house S/C I&T, testing,
Tyvak NLAS/Launch Integration

Operations:

Primary: DSN 34m EDL: Madrid 70m

MarCO HGA Deployment

MarCO UHF Antenna Deployment

Bent Pipe Attitude In Flight Test HGA 3db Beamwidth MarCO ~ 4 deg x 7 deg **UHF FOV** 90° 135 22.75 deg 180 225.55 T+B65s 528.09 Red=30 deg >30 deg Off-boresight \$150 off-boresight 270° Td-953s Entry 3600 **UHF** boresight 3400 3200 204,06 3000 2800 2600 ~15% "Overhead" on Bent Pipe: MarCO Frame headers 2400 + Interleaved MarCO Data Possible UHF to 8k **UHF** Carrier Chute Blackout E-7min E-1:50 Shield Lander Sep Touch E+1:00-3:00 Turn to Entry Radar (Loss) down **UHF Off** E-6:30 E+3:20 E+4:15 E+6:00 E+6:40 T+5min Entry Rec'd at MarCO

Rec'd at Earth

MarCO-InSight Relay

- Prioritization scheme based on packet type (APID)
 - InSight data would stream at a near continuous sense
 - 30 sec interrupts with a snapshot of MarCO health data and a 2 sec cadence history of relevant RF information
 - Anything not relevant for informing InSight about signal status was saved for later downlink.
- Could have maintained the 62.5 downlink to 70m DSN station using the MGA if HGA did not perform as expected
- Leveraged an optimized trajectory for relay performance an advantage of the dedicated relay
- Able to rely on commercial equipment since only need to support the relay once (not staying in orbit)
- Add redundancy in sending two spacecraft (uncertainty in both MarCO performance and final InSight EDL trajectory)

- Both MarCO-A and MarCO-B met expectations
- UHF Link, both vehicles covered full duration of Insight UHF Transmit
 - MCOB lost lock for 5 sec only at the expected events of plasma blackout, parachute deploy, Lander separation, and Landing
- X-Band Link, both vehicles
 - Solid on both throughout
 - No frames dropped
- Swap of Insight uplink to MarCO-B during EDL enabled efficient use of post-EDL bandwidth resulting in receipt of this image within ~ 1 hour of Landing

Conclusions

Consider in the future:

- Dedicated small spacecraft can support critical events when too costly or infeasible for others to perform the relay
- Small spacecraft can be sent in multiples to provide improved coverage or signal reliability

Lesson Learned:

- single uplink frequency for both
- Had end to end simulation for both X band and UHF
- In-space test with SRI (46m), Morehead was 21m

